Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Annals of Intensive Care ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837681

ABSTRACT

BackgroundIn-person mass gathering events (MGE) are returning after a period of restrictions, yet few prospective scientific evaluations of their safety are available.MethodsProspective observational study, including both attendees of the French Intensive Care Society (FICS) annual meeting held in Paris between June the 9th and June the 11th, 2021 and matched controls (healthcare professionals who stayed in the ICU during the conference). SARS-CoV-2 lateral flow test was performed on day 7. Follow-up occurred until day 21.ResultsOut of the 1824 healthcare professionals attending the congress (all of which fulfilled legal requirements: 7 days or more following a second dose of vaccine or a negative PCR test performed within less than 72 h), 520 (28.5%) agreed to participate. Follow-up data were received for 216 (41.5%) out of the 520 included attendees, and for 191 matched controls. No positive SARS-CoV-2 lateral flow test was reported in the attendees or in the matched controls. The probability of SARS-CoV-2 infection during the MGE was less than 1.7% in the attendees (95% confidence interval [0;1.7%]), less than 2% in the controls (95%CI [0;2%]) and the difference in probabilities of infection was less than 1.9% (95% CI [0;1.9%]).ConclusionDuring a low incidence period, in this population of congress attendees screened for SARS-CoV-2 by a lateral flow test at day 7, no positive cases could be documented, no concomitant infection occurred in the matched controls;suggesting no extra risk of infection during the MGE.Trial Registration: ClinicalTrial.gov, #NCT04918160.

2.
Microb Risk Anal ; 19: 100162, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1525906

ABSTRACT

The 2020 Olympic/Paralympic Games have been postponed to 2021, due to the COVID-19 pandemic. We developed a model that integrated source-environment-receptor pathways to evaluate how preventive efforts can reduce the infection risk among spectators at the opening ceremony of Tokyo Olympic Games. We simulated viral loads of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emitted from infectors through talking/coughing/sneezing and modeled temporal environmental behaviors, including virus inactivation and transfer. We performed Monte Carlo simulations to estimate the expected number of newly infected individuals with and without preventive measures, yielding the crude probability of a spectator being an infector among the 60,000 people expected to attend the opening ceremony. Two indicators, i.e., the expected number of newly infected individuals and the newly infected individuals per infector entry, were proposed to demonstrate the extent of achievable infection risk reduction levels by implementing possible preventive measures. A no-prevention scenario produced 1.5-1.7 newly infected individuals per infector entry, whereas a combination of cooperative preventive measures by organizers and the spectators achieved a 99% risk reduction, corresponding to 0.009-0.012 newly infected individuals per infector entry. The expected number of newly infected individuals was calculated as 0.005 for the combination of cooperative preventive scenarios with the crude probability of a spectator being an infector of 1 × 10-5. Based on our estimates, a combination of cooperative preventions between organizers and spectators is required to prevent a viral spread at the Tokyo Olympic/Paralympic Games. Further, under the assumption that society accepts < 10 newly infected persons traced to events held during the entire Olympic/Paralympic Games, we propose a crude probability of infectors of < 5 × 10-5 as a benchmark for the suppression of the infection. This is the first study to develop a model that can assess the infection risk among spectators due to exposure pathways at a mass gathering event.

SELECTION OF CITATIONS
SEARCH DETAIL